On Ratliff-Rush closure of modules

Naoki Taniguchi

Waseda University

AMS Meeting Special Session on Homological Algebra

March 17, 2018

$\S1$ Introduction

Throughout my talk

- A a commutative Noetherian ring
- I, J ideals of A

•
$$\widetilde{I} = \bigcup_{\ell \ge 0} \left[I^{\ell+1} :_{\mathcal{A}} I^{\ell} \right]$$
 the Ratliff–Rush closure of I

•
$$\mathcal{R}(I) = A[It] \subseteq A[t]$$
 the Rees algebra of I

Note that

- $I \subseteq \widetilde{I}$ and $\widetilde{I} \cdot \widetilde{J} \subseteq \widetilde{IJ}$
- $\widetilde{I} \subseteq \overline{I}$, if grade_A I > 0
- If $J \subseteq I$ and J is a reduction of I, then $\widetilde{J} \subseteq \widetilde{I}$.

The projective scheme

 $\operatorname{Proj} \mathcal{R}(I) = \{ P \in \operatorname{Spec} \mathcal{R}(I) \mid P \text{ is a graded ideal}, \ P \not\supseteq \mathcal{R}(I)_+ \}$

of $\mathcal{R}(I)$ defines the blowup of Spec A along V(I).

Theorem 1.1 (Goto-Matsuoka, 2005) Let (A, \mathfrak{m}) be a two-dimensional RLR, $\sqrt{I} = \mathfrak{m}$. Then TFAE. (1) $\widetilde{I} = \overline{I}$. (2) Proj $\mathcal{R}(I)$ is a normal scheme. When this is the case, $\mathcal{R}(I)$ has FLC, $H^1_{\mathfrak{M}}(\mathcal{R}(I)) \cong \mathcal{R}(\overline{I})/\mathcal{R}(I)$, and

$$\mathcal{R}(I)$$
 is $CM \iff \overline{I} = I$.

• The notion of Rees algebra $\mathcal{R}(I)$ can be generalized to the module M, which is defined as

 $\mathcal{R}(M) = \operatorname{Sym}_{A}(M)/t(\operatorname{Sym}_{A}(M)).$

- The Rees algebra of *M* includes the multi-Rees algebra, which corresponds to the case where *M* = *I*₁ ⊕ *I*₂ ⊕ · · · ⊕ *I*_ℓ.
- The application to *equisingularity theory* needs this generalization ([2, 3]).

Question 1.2 Can we generalize Theorem 1.1 to the case of modules?

Contents Introduction Preliminaries Ratliff–Rush closure of modules Main results Application

э

э

< /□ > <

§2 Preliminaries

Setting 2.1

- A a Noetherian ring
- *M* a finitely generated *A*-module
- $F = A^{\oplus r}$ (r > 0) s.t. $M \subseteq F$

Look at the diagram

The Rees algebra $\mathcal{R}(M)$ of M is defined by

$$\mathcal{R}(M) = \operatorname{Im}(\operatorname{Sym}(i)) \subseteq S = A[t_1, t_2, \dots, t_r]$$
$$= \bigoplus_{n \ge 0} M^n.$$

Definition 2.2

For $\forall n \geq 0$, we define

$$\overline{M^n} = \left(\overline{\mathcal{R}(M)}^S\right)_n \subseteq S_n = F^n$$

and call it the integral closure of M^n .

A - A - A

Proposition 2.3

For $\forall n \geq 0$, we have

$$\overline{M^n} = \left(\overline{(MS)^n}\right)_n$$

In particular, $\overline{M} = (\overline{MS})_1 \subseteq F$.

More precisely, $x \in \overline{M}$ satisfies

$$x^n + c_1 x^{n-1} + \dots + c_n = 0 \quad \text{in } S$$

where n > 0, $c_i \in M^i$ for $1 \leq \forall i \leq n$.

Lemma 2.4

Suppose that rank_A M = r. Then $Q(\mathcal{R}(M)) = Q(S)$. Moreover, if A is a normal domain, then 0(0(10)) S

$$\overline{\mathcal{R}(M)}^{Q(\mathcal{R}(M))} = \overline{\mathcal{R}(M)}^{Q(\mathcal{R}(M))}$$

Proof.

Look at the diagram $Q(A) \otimes_A Sym_A(M)$ $Q(A) \otimes_A S$ Sym(i) $\operatorname{Sym}_{\Delta}(M)$ We get $0 \to t(\operatorname{Sym}_{A}(M)) \to \operatorname{Sym}_{A}(M) \to \mathcal{R}(M) \to 0$ which yields $Q(A) \otimes_A S \cong Q(A) \otimes_A Sym_A(M) \cong Q(A) \otimes_A \mathcal{R}(M).$ - ∢ ⊒ →

§3 Ratliff–Rush closure of modules

Setting 3.1

- A a Noetherian ring
- *M* a finitely generated *A*-module

•
$$F = A^{\oplus r}$$
 $(r > 0)$ s.t. $M \subseteq F$

•
$$\mathcal{R}(M) = \operatorname{Im}(\operatorname{Sym}_{A}(M) \longrightarrow \operatorname{Sym}_{A}(F)) \subseteq \operatorname{Sym}_{A}(F)$$

We set
$$\mathfrak{a} = \mathcal{R}(M)_+ = \bigoplus_{n>0} M^n$$
, $S = \operatorname{Sym}_{\mathcal{A}}(F)$, and

$$\widetilde{\mathcal{R}(M)}^{S} := \varepsilon^{-1} \left(\mathsf{H}^{0}_{\mathfrak{a}}(S/\mathcal{R}(M)) \right) \subseteq S$$

where $\varepsilon : S \to S/\mathcal{R}(M)$.

э

Definition 3.2

For $\forall n \geq 0$, we define

$$\widetilde{M^n} = \left(\widetilde{\mathcal{R}(M)}^S\right)_n \subseteq S_n = F^n$$

and call it the Ratliff-Rush closure of M^n .

Definition 3.3 (Liu, 1998)

Suppose that A is a Noetherian domain. Then \widetilde{M} is defined to be the largest A-submodule N of F satisfying

•
$$M \subseteq N \subseteq F$$
,

• $M^n = N^n$ for $\forall n \gg 0$.

Remark 3.4

These definitions coincide, when A is a Noetherian domain.

Proposition 3.5

For $\forall n \geq 0$, we have

$$\widetilde{M^n} = \bigcup_{\ell > 0} \left[(M^n)^{\ell+1} :_{F^n} (M^n)^\ell \right] = \left(\widetilde{(MS)^n} \right)_n$$

In particular

$$\widetilde{M} = \bigcup_{\ell > 0} \left[M^{\ell+1} :_F M^{\ell} \right] = \left(\widetilde{MS} \right)_1.$$

Corollary 3.6

Suppose that M is a faithful A-module. Then

$$\widetilde{M^n} \subseteq \overline{M^n} \subseteq F^n$$

for $\forall n \geq 0$. Hence

$$\mathcal{R}(M) \subseteq \widetilde{\mathcal{R}(M)}^{S} \subseteq \overline{\mathcal{R}(M)}^{S} \subseteq S.$$

Definition 3.7 (Buchsbaum-Rim, 1964, Hayasaka-Hyry, 2010)

Suppose that (A, \mathfrak{m}) is a Noetherian local ring with $d = \dim A$. Then M is called a parameter module in F, if

- $\ell_A(F/M) < \infty$,
- $M \subseteq \mathfrak{m}F$, and

•
$$\mu_A(M) = d + r - 1$$
.

Proposition 3.8

Suppose that (A, \mathfrak{m}) is a CM local ring with $d = \dim A > 0$. Let M be a parameter module in F. Then

$$\widetilde{M} = M.$$

Example 3.9

Let A = k[[X, Y]]. Set

$$M = \left\langle \begin{pmatrix} X \\ 0 \end{pmatrix}, \begin{pmatrix} Y \\ X \end{pmatrix}, \begin{pmatrix} 0 \\ Y \end{pmatrix} \right\rangle \subseteq F = A \oplus A.$$

Then *M* is a parameter module in *F* and $\widetilde{M} = M$.

Example 3.10

Let R = k[[X, Y, Z, W]]. Set

$$A = R/(X, Y) \cap (Z, W), \quad Q = (X - Z, Y - W)A.$$

Then $\widetilde{Q} = Q$.

э

Proposition 3.11

Suppose that $L = Ax_1 + Ax_2 + \cdots + Ax_{\ell} \ (\subseteq M)$ is a reduction of M. Then

$$\widetilde{M} = \bigcup_{n>0} \left[M^{n+1} :_F \left(A x_1^n + A x_2^n + \dots + A x_\ell^n \right) \right]$$

Corollary 3.12

If L is a reduction of M, then

$$\widetilde{L} \subseteq \widetilde{M}.$$

3

Remark 3.13

The implication

$$L \subseteq M \implies \widetilde{L} \subseteq \widetilde{M}$$

does **NOT** hold in general.

Example 3.14 (Heinzer-Johnston-Lantz-Shah, 1993)

We consider

$$A = k[[t^3, t^4]] \subseteq k[[t]], I = (t^8), \text{ and } J = (t^{11}, t^{12}).$$

Then $J \subseteq I$, but $\widetilde{J} \nsubseteq \widetilde{I}$.

A .

э

The following is the key in our argument.

Proposition 3.15

Suppose that M is a faithful A-module. Then the following assertions hold.

(1)
$$\widetilde{M^n} = (\widetilde{M})^n = M^n$$
 for $\forall n \gg 0$

(2) Let N be an A-submodule of F s.t. $M \subseteq N$. Then TFAE.

(i)
$$N \subseteq \widetilde{M}$$
.
(ii) $M^{\ell} = N^{\ell}$ for $\exists \ell > 0$.
(iii) $M^n = N^n$ for $\forall n \gg 0$.
(iv) $\widetilde{M} = \widetilde{N}$.
3) $\widetilde{\widetilde{M}} = \widetilde{M}$.

Let us note the following.

Lemma 3.16

Suppose that (A, \mathfrak{m}) is a Noetherian local ring. If $\overline{M} = F$, then M = F. In particular, if $M \neq F$ and M is faithful, then $\widetilde{M} \neq F$.

Proof.

Suppose $M \neq F$ and choose a counterexample M so that $r = \operatorname{rank}_A F > 0$ is as small as possible. Then $M \subseteq \mathfrak{m}F$. Therefore

$$F = \overline{M} \subseteq \overline{\mathfrak{m}F} = \overline{\mathfrak{m}}F = \mathfrak{m}F$$

so that $F = \mathfrak{m}F$, which is a contradiction.

In what follows, we assume

- (A, \mathfrak{m}) a Noetherian local ring with $d = \dim A$
- $F = A^{\oplus r} (r > 0)$
- (0) $\neq M \subsetneq F$ s.t. $\ell_A(F/M) < \infty$

Then \exists br_i(M) $\in \mathbb{Z}$ ($0 \le i \le d + r - 1$) s.t.

$$\ell_A(F^{n+1}/M^{n+1}) = \sum_{i=0}^{d+r-1} (-1)^i \cdot br_i(M) \cdot \binom{n+d+r-i-1}{d+r-2}$$

for $\forall n \gg 0$.

The integer $br_i(M)$ is called the *i*-th Buchsbaum-Rim coefficient of M.

Set

$$\mathcal{S} = \{N \subseteq F \mid M \subseteq N \subsetneq F, \ \mathsf{br}_i(M) = \mathsf{br}_i(N) \text{ for } 0 \le \forall i \le d + r - 1\}.$$

Proposition 3.17

Suppose that M is a faithful A-module. Then

$$\widetilde{M} \in \mathcal{S}$$
 and $N \subseteq \widetilde{M}$ for $\forall N \in \mathcal{S}$.

Hence \widetilde{M} is the largest A-submodule N of F s.t.

•
$$M \subseteq N \subsetneq F$$
,

•
$$\operatorname{br}_i(M) = \operatorname{br}_i(N)$$
 for $0 \le \forall i \le d + r - 1$.

§4 Main Results

Setting 4.1

- (A, \mathfrak{m}) a two-dimensional RLR, $|A/\mathfrak{m}| = \infty$
- $M \neq (0)$ a finitely generated torsion-free A-module

•
$$(-)^* = Hom_A(-, A)$$

•
$$F = M^{**} = A^{\oplus r}$$
 s.t. $\ell_A(F/M) < \infty$

• $\mathcal{R}(M)$ the Rees algebra of M

•
$$\mathfrak{M} = \mathfrak{mR}(M) + \mathcal{R}(M)_+$$

• Proj $\mathcal{R}(M) = \{P \in \operatorname{Spec} \mathcal{R}(M) \mid P \text{ is a graded ideal}, P \not\supseteq \mathcal{R}(M)_+\}$

Note that dim $\mathcal{R}(M) = r + 2$ and

$$\overline{M^n} = \left(\overline{M}\right)^n$$

for $\forall n \geq 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

The main result of my talk is stated as follows.

Theorem 4.2

TFAE.

- (1) $\widetilde{M} = \overline{M}$.
- (2) $\widetilde{M^n} = \overline{M^n}$ for $\forall n > 0$.
- (3) $M^n = \overline{M^n}$ for $\exists n > 0$.
- (4) $M^n = \overline{M^n}$ for $\forall n \gg 0$.
- (5) Proj $\mathcal{R}(M)$ is a normal scheme.
- (6) $\mathcal{R}(M)_P$ is normal for $\forall P \in \operatorname{Spec} \mathcal{R}(M) \setminus \{\mathfrak{M}\}.$

When this is the case, $\mathcal{R}(M)$ has FLC, $H^1_{\mathfrak{M}}(\mathcal{R}(M)) \cong \mathcal{R}(\overline{M})/\mathcal{R}(M)$, and

$$\mathcal{R}(M)$$
 is $CM \iff \overline{M} = M$.

э

< ∃ →

< 17 ▶

-

Proof of Theorem 4.2

(1)
$$\Rightarrow$$
 (4) Note that $M^n = (\widetilde{M})^n$ for $\forall n \gg 0$. Then
$$M^n = (\widetilde{M})^n = (\overline{M})^n = \overline{M^n}.$$

(4) \Rightarrow (3) Obvious. (3) \Rightarrow (1) Suppose $M^n = \overline{M^n} = (\overline{M})^n$ for $\exists n > 0$. Then $(\overline{M})^{n+1} = M^{n+1}$. Therefore

$$\overline{M} \subseteq M^{n+1} :_F (\overline{M})^n = M^{n+1} :_F M^n \subseteq \widetilde{M} \subseteq \overline{M}$$

which yields $\widetilde{M} = \overline{M}$. (1) \Rightarrow (2) We have $(\widetilde{M})^n = (\overline{M})^n$ for $\forall n > 0$. Then $\overline{M^n} = (\overline{M})^n = (\widetilde{M})^n \subseteq \widetilde{M^n} \subseteq \overline{M^n}$

as desired.

 $(2) \Rightarrow (1)$ Obvious.

Theorem 4.2

TFAE.

- (1) $\widetilde{M} = \overline{M}$.
- (2) $\widetilde{M^n} = \overline{M^n}$ for $\forall n > 0$.
- (3) $M^n = \overline{M^n}$ for $\exists n > 0$.
- (4) $M^n = \overline{M^n}$ for $\forall n \gg 0$.
- (5) $\operatorname{Proj} \mathcal{R}(M)$ is a normal scheme.
- (6) $\mathcal{R}(M)_P$ is normal for $\forall P \in \operatorname{Spec} \mathcal{R}(M) \setminus \{\mathfrak{M}\}.$

When this is the case, $\mathcal{R}(M)$ has FLC, $H^1_{\mathfrak{M}}(\mathcal{R}(M)) \cong \mathcal{R}(\overline{M})/\mathcal{R}(M)$, and

$$\mathcal{R}(M)$$
 is $CM \iff \overline{M} = M$.

(4) \Rightarrow (6) Suppose $M^n = \overline{M^n}$ for $\forall n \gg 0$. Let $C = \mathcal{R}(\overline{M})/\mathcal{R}(M)$. Then $C_n = (0)$ for $n \gg 0$, so that C is finitely graded. Therefore

 $\mathfrak{a}^m \cdot C = (0), \quad \mathfrak{m}^m \cdot C = (0)$

for $\exists m > 0$. Thus $\mathfrak{M} \subseteq \sqrt{(0) : C}$ and hence

 $\operatorname{Supp}_{\mathcal{R}(M)} C \subseteq \{\mathfrak{M}\}.$

Consequently, for $\forall P \in \text{Spec } \mathcal{R}(M) \setminus \{\mathfrak{M}\}, \ \mathcal{R}(M)_P = \mathcal{R}(\overline{M})_P$ is normal. (6) \Rightarrow (5) Obvious.

(5) \Rightarrow (4) Let $C = \mathcal{R}(\overline{M})/\mathcal{R}(M)$. We can check that

$$\mathfrak{a} \subseteq \sqrt{(0):C}$$

whence *C* is finitely graded. Hence $M^n = \overline{M^n}$ for $\forall n \gg 0$.

▲冊▶▲■▶▲■▶ ■ 釣ぬ⊙

25 / 36

Choose a parameter module L in F s.t. L is a reduction of \overline{M} . Then

$$(\overline{M})^2 = L \cdot \overline{M}$$

so that $\mathcal{R}(\overline{M})$ is a CM ring. Therefore

 $\mathrm{H}^{1}_{\mathfrak{M}}(\mathcal{R}(M))\cong \mathcal{R}(\overline{M})/\mathcal{R}(M), \ \, \mathrm{H}^{i}_{\mathfrak{M}}(\mathcal{R}(M))=(0) \ \, \text{for} \ \, \forall i\neq 1,r+2.$

Hence $\mathcal{R}(M)$ has FLC and

$$\mathcal{R}(M) \text{ is a CM ring} \iff H^{1}_{\mathfrak{M}}(\mathcal{R}(M)) = (0)$$
$$\iff (\overline{M})^{n} = M^{n} \text{ for } \forall n > 0$$
$$\iff \overline{M} = M$$

which complete the proof.

Corollary 4.3

Suppose that $M \neq F$ and $\widetilde{M} = \overline{M}$. Then

$$\mathsf{br}_1(M) = \mathsf{br}_0(M) - \ell_{\mathcal{A}}(F/\overline{M}), \;\; \mathsf{br}_i(M) = 0 \;\; \textit{for} \;\; 2 \leq orall i \leq r+1$$

and

$$\ell_{\mathcal{A}}(\mathcal{F}^{n+1}/(\overline{M})^{n+1}) = \mathsf{br}_0(M) \cdot \binom{n+r+1}{r+1} - \mathsf{br}_1(M) \cdot \binom{n+r}{r} \quad \textit{for} \quad \forall n \ge 0.$$

э

合 ▶

$\S 5$ Application

We maintain the notation as in Setting 4.1.

Theorem 5.1

TFAE.

- (1) $\mathcal{R}(M)$ is a Buchsbaum ring and $\widetilde{M} = \overline{M}$.
- (2) $\mathcal{R}(M)$ is a Buchsbaum ring and Proj $\mathcal{R}(M)$ is normal.

(3)
$$\mathfrak{m}\overline{M} \subseteq M$$
 and $M \cdot \overline{M} = M^2$.

When this is the case,

$$\mathsf{H}^1_{\mathfrak{M}}(\mathcal{R}(M)) = \left[\mathsf{H}^1_{\mathfrak{M}}(\mathcal{R}(M))\right]_1 \cong \overline{M}/M$$

and $\overline{M^n} = M^n$ for $\forall n \ge 2$.

Example 5.2

Let A = k[[X, Y]]. Set

$$I = (X^4, X^3Y^2, XY^6, Y^8)$$
 and $M = I \oplus I \subseteq F = A \oplus A$.

Then $\widetilde{M} = \overline{M}$, but $\mathcal{R}(M)$ is not Buchsbaum.

Example 5.3

Let A = k[[X, Y]]. Set

$$I_1 = (X^6, X^5Y^2, X^4Y^3, X^3Y^4, XY^7, Y^8), \quad I_2 = (X^5, X^4Y^2, X^3Y^3, XY^6, Y^7)$$

and

$$M = I_1 \oplus I_2 \subseteq F = A \oplus A.$$

Then $\widetilde{M} = \overline{M}$ and $\mathcal{R}(M)$ is a Buchsbaum ring.

э

イロト イポト イヨト イヨト

Corollary 5.4

Suppose that $\mathcal{R}(M)$ is a Buchsbaum ring and $\widetilde{M} = \overline{M}$. Then, for $\forall I \subsetneq A$ an ideal of A s.t. $\sqrt{I} = \mathfrak{m}$ and $\overline{I} = I$,

 $\mathcal{R}(I \cdot M)$ is a Buchsbaum ring.

In particular, $\mathcal{R}(\mathfrak{m}^{\ell}M)$ is a Buchsbaum ring for $\forall \ell \geq 0$.

Corollary 5.5

Let $M_1, M_2 \neq (0)$ be finitely generated torsion-free A-modules. We set

$$F_1 = (M_1)^{**}, \ F_2 = (M_2)^{**}$$

and

$$M = M_1 \oplus M_2 \subseteq F = F_1 \oplus F_2.$$

Then TFAE.

 R(M) is a Buchsbaum ring and M = M.
 R(M_i) is a Buchsbaum ring, M_i = M_i (i = 1, 2), and M₁ · M₂ = M₁ · M₂ = M₁ · M₂.

Corollary 5.6

Suppose that $\mathcal{R}(M)$ is a Buchsbaum ring and $\widetilde{M} = \overline{M}$. Then

 $\mathcal{R}(N)$ is a Buchsbaum ring and $\widetilde{N} = \overline{N}$.

for all direct summand N of M.

Corollary 5.7

Suppose that $\mathcal{R}(M)$ is a Buchsbaum ring and $\widetilde{M} = \overline{M}$. Then

$$\mathcal{R}(M^{\oplus \ell})$$
 is a Buchsbaum ring and $\widetilde{M^{\oplus \ell}} = \overline{M^{\oplus \ell}}$

for $\forall \ell > 0$.

Example 5.8

Let A = k[[X, Y]] and k an infinite field. Set

$$M = \left\langle \begin{pmatrix} X^3 \\ 0 \end{pmatrix}, \begin{pmatrix} X^2 Y^2 \\ 0 \end{pmatrix}, \begin{pmatrix} XY^3 \\ X^3 \end{pmatrix}, \begin{pmatrix} Y^5 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ X^2 Y^2 \end{pmatrix}, \begin{pmatrix} 0 \\ XY^4 \end{pmatrix}, \begin{pmatrix} 0 \\ Y^5 \end{pmatrix} \right\rangle.$$

Then $\widetilde{M} = \overline{M}$, $\mathcal{R}(M)$ is a Buchsbaum ring, and M is indecomposable.

We set

$$\mathcal{F}(M) = A/\mathfrak{m} \otimes_A \mathcal{R}(M) \cong \mathcal{R}(M)/\mathfrak{m}\mathcal{R}(M)$$

and call it the fiber cone of M.

Note that

$$\dim \mathcal{F}(M) = r + 1.$$

Theorem 5.9

Suppose that $\mathcal{R}(M)$ is a Buchsbaum ring and $\widetilde{M} = \overline{M}$. Then

 $\mathcal{F}(M)$ is a Buchsbaum ring.

Thank you so much for your attention.

References

- D. A. BUCHSBAUM AND D. S. RIM, A generalized Koszul complex. II. Depth and multiplicity, *Trans. Amer. Math. Soc.*, 111 (1964), 197–224.
- T. GAFFNEY, Integral closure of modules and Whitney equisingularity, *Invent. Math.*, 107 (1992), 301-322.
- [3] T. GAFFNEY, Multiplicities and equiingularity of ICIS germs, *Invent. Math.*, 123 (1996), 209-220.
- [4] S. GOTO AND N. MATSUOKA, The Rees algebras of ideals in two-dimensional regular local rings, The Proceedings of the 27-th Symposium on Commutative Algebra, (2006) 81–89.
- [5] F. HAYASAKA AND E. HYRY, A note on the Buchsbaum-Rim multiplicity of a parameter module, Proc. Amer. Math. Soc., 138 (2010), 545-551.
- [6] W. HEINZER, B. JOHNSTON, D. LANTZ, AND K. SHAH, Coefficient ideals in and blowups of a commutative Noetherian domain, J. Algebra, 162 (1993), 355–391.
- [7] J.-C. LIU, Ratliff–Rush closures and coefficient modules, J. Algebra, 201 (1998), 584–603.
- [8] N. MATSUOKA, Ratliff-Rush closure of certain two-dimensional monomial ideals and Buchsbaumness of their Rees algebras, *The Proceedings of the 26-th Symposium on Commutative Algebra*, (2005) 19–28.